コンテンツにスキップ

三角関数

公式

\[ \begin{aligned} & sin^2\theta+cos^2\theta=1 \\ & tan^2\theta+1=\frac{1}{cos^2\theta}\\ \end{aligned} \]

正弦定理

\[ \frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R \]

余弦定理

\[ a^2=b^2+c^2-2bc\cdot cosA \]

加法定理

\[ \begin{aligned} sin(\alpha\pm\beta) = sin\alpha\cdot cos\beta\pm cos\alpha\cdot sin\beta \\ cos(\alpha\pm\beta) = cos\alpha\cdot cos\beta\mp sin\alpha\cdot sin\beta \\ \end{aligned} \]

倍角

\[ \begin{aligned} sin2\theta &= 2sin\theta cos\theta \\ cos2\theta &= cos^2\theta-sin^2\theta \\ &= 2cos^2\theta -1 \\ &= 1-2sin^2\theta \\ tan2\theta &= \frac{2tan\theta}{1-tan^2\theta} \end{aligned} \]
\[ \begin{aligned} sin3\theta &= 3sin\theta-4sin^3\theta \\ cos3\theta &= 4cos^3\theta - 3cos\theta \\ tan3\theta &= \frac{3tan\theta-tan^3\theta}{1-3tan^2\theta} \end{aligned} \]

半角

\[ \begin{aligned} sin^2\frac{\theta}{2} &= \frac{1-cos\theta}{2} \\ cos^2\frac{\theta}{2} &= \frac{1+cos\theta}{2} \\ tan^2\frac{\theta}{2} &= \frac{1-cos\theta}{1+cos\theta} \end{aligned} \]

積和

\[ \begin{aligned} sin\alpha\cdot cos\beta &= \frac{1}{2}\lbrace sin(\alpha+\beta)+sin(\alpha-\beta)\rbrace \\ cos\alpha\cdot sin\beta &= \frac{1}{2}\lbrace sin(\alpha+\beta)-sin(\alpha-\beta)\rbrace \\ cos\alpha\cdot cos\beta &= \frac{1}{2}\lbrace cos(\alpha+\beta)+cos(\alpha-\beta)\rbrace \\ sin\alpha\cdot sin\beta &= \frac{-1}{2}\lbrace cos(\alpha+\beta)-cos(\alpha-\beta)\rbrace \\ \end{aligned} \]

和積

\[ \begin{aligned} sin\alpha+sin\beta &= 2sin\frac{\alpha+\beta}{2}cos\frac{\alpha-\beta}{2} \\ sin\alpha-sin\beta &= 2cos\frac{\alpha+\beta}{2}sin\frac{\alpha-\beta}{2} \\ cos\alpha+cos\beta &= 2cos\frac{\alpha+\beta}{2}cos\frac{\alpha-\beta}{2} \\ cos\alpha-cos\beta &= -2sin\frac{\alpha+\beta}{2}sin\frac{\alpha-\beta}{2} \\ \end{aligned} \]

逆数

\[ \begin{aligned} \frac{1}{sinx} &= cosecx & セカント \\ \frac{1}{cosx} &= secx & コセカント \\ \frac{1}{tanx} &= cotx & コタンジェント \\ \end{aligned} \]

逆関数

\(y=f(x)\)に対する\(x=f^{-1}(y)\)

角度\(\theta\)を求める

\(sin^{-1}\theta\)

\[ y_{sin}=sin(\theta) \rightarrow \theta = arcsin(y_{sin}) \\ \]

\(cos^{-1}\theta\)

\[ y_{cos}=cos(\theta) \rightarrow \theta = arccos(y_{cos}) \]

\(tan^{-1}\theta\)

\[ y_{tan}=tan(\theta) \rightarrow \theta = arctan(y_{tan}) \]

Reference


最終更新日: August 14, 2023
作成日: August 14, 2023